Moving towards a lifecycle approach
The current CO₂ emission standards for new vehicles do not consider renewable fuels. The EU legal framework for reducing CO₂ emissions in road transport splits the responsibility along the supply chain.
Compare the lifecycle emissions
of heavy-duty vehicles and buses
A Carbon Correction Factor (CCF) to account for CO2 savings provided by renewable fuels
- The current Tank-to-Wheel approach fails to distinguish between the renewable and fossil origin of the fuels and represents an outdated way of comparing different vehicle technologies.
- A carbon correction factor would take into consideration the share of renewable fuel in the fuel mix for different fuel types in a reference year. Such an option would reduce the CO2 emission targets for truck manufacturers by the amount of renewable fuels already included in the current fuel mix.
- This would take into account that, in addition to technological and efficiency improvements by manufacturers, the fuel mix is decisive for how much CO2 a truck emits.
A Crediting System to offset the carbon footprint with additional amounts of renewable fuels
- Under a voluntary crediting system for renewable fuels, fuel suppliers would receive credits for supplying renewable fuels in addition to existing fuels, which are accounted to the Renewable Energy Directive. Vehicle manufacturers can buy these credits and include them in their fleet target in the CO2 emission standards.
- This voluntary scheme provides a new option for truck manufacturers to meet the targets by bringing additional quantities of renewable fuels to the market.
- When selling a new vehicle, the lifetime CO2 emissions of the truck would immediately be compensated by bringing the equivalent amount of renewable fuels into the fuel mix. Bringing the CO2 reduction forward by several years.
Why include renewable fuels
in the new CO2 emission standards for heavy-duty vehicles
Enabling climate friendly logistics while keeping supply chains intact
What needs to be done now
Including renewable fuels in the CO2 emission standards can provide a greater choice of climate neutral and socially just mobility options that doesn’t overburden the European citizens and businesses, keeps the supply chain intact and leads to a more comprehensive climate policy along the lifecycle of vehicles.
Road Transport
Road transport is one of the biggest CO2 emitters in the EU, accounting for one fifth of CO2 emissions. Heavy duty vehicles and busses make up for almost 30 % of all road transport emissions. CO2 emission standards play a significant role in meeting the 2030 climate targets and climate neutrality by 2050. The enormous potential of climate protection solutions, such as biofuels as well as hydrogen and its derivative products, which include eFuels, can strengthen defossilisation efforts in Europe.
Lifecycle Approach
The current regulation only considers GHGs emitted from the tailpipe and ignores emissions that occur in other stages, such as production or operating power. But the entire lifecycle of a truck matters for climate protection.
If investments of the automotive industry lead to additional amounts of renewable fuels in the European market, these efforts should also be considered in CO2 emission standards.
More choices
fewer emissions
The current regulation on CO2 emission standards for trucks does not take renewable fuels into account. Currently, only the electric drivetrain and hydrogen fuel cells are considered a climate-friendly option – customers have no choice since other available technologies are excluded.
The EU’s electricity mix is still heavily dependent on fossil fuels, which contradicts the goal of reducing emissions in the transport sector. A combustion engine powered by renewable, sustainable fuels is as clean as an electric vehicle powered by green electricity. The compromise on the CO2 emission standards for cars on the inclusion of CO2-neutral fuels is an important beginning - now the truck regulation has to follow.
Technology Openness
Especially in light of the EU climate goals of reaching climate neutrality by 2050, a wide range of technologies should be allowed to contribute to emission reduction. A consideration of renewable fuels in the CO2 emission standards would be a first step to a more holistic and socially acceptable climate approach in transport. This can be reached by implementing a Carbon Correction Factor or a voluntary crediting system for renewable fuels, which can also be combined.
Debunking: Why the negative impacts of
including renewable fuels are negligible
The negative effects identified by the EU Commission in its impact assessment are the following:
Broad support for renewable fuels from industry and science
Over 120 associations and companies and over 90 scientists have spoken out in favour of including renewable fuels in the CO2 emission standards for trucks.
Support from Scientists
Prof. Dr.-Ing. Uwe Adler (Erfurt, Germany)
Edgar Ahn, PhD (Graz, Austria)
Jonas Ammenberg, PhD (Linköping, Sweden)
Prof. Dr. José Guilherme Coelho Baêta (Belo Horizonte, Brazil)
Dr. R.J.M. Bastiaans (Eindhoven, Netherlands)
Dr.-Ing. Bernhard Bäuerle (Stuttgart, Germany)
Prof. Dr. Pål Börjesson (Lund, Sweden)
Prof. Dr.techn. Christian Beidl (Darmstadt, Germany)
Dr.-Ing. Benjamin Böhm (Darmstadt, Germany)
Dr. Aleš Bulc (Leipzig, Germany)
Prof. Dr.-Ing. Michael Butsch (Constance, Germany)
Prof. Ulrich Bruhnke (Lustenau, Austria)
Prof. Dr. Matthias Brunner (Saarbrücken, Germany)
Prof. David Chiaramonti (Torino, Italy)
Dr. Klaus Dieterich (Stuttgart, Germany)
Prof. Dr. Friedrich Dinkelacker (Hannover, Germany)
Prof. Dr. habil. Andreas Dreizler (Darmstadt, Germany)
Prof. Dr.-Ing. habil. Eberhard R. Drechsel (Munich, Germany)
Prof. Dr. Alexander Eisenkopf (Friedrichshafen, Germany)
Prof. Mats Eklund (Linköping, Sweden)
Prof. Alessio Frassoldati (Milano, Italy)
Prof. Dr.-Ing. Thomas Gänsicke (Wolfsburg, Germany)
Dr.-Ing. Claus-Eric Gärtner (Munich, Germany)
Prof. Dr. techn. Dipl.-Ing. Bernhard Geringer (Vienna, Austria)
Bernhard Gerster (Basel, Switzerland)
Prof. Dr.-Ing. habil. Jörn Getzlaff (Zwickau, Germany)
Prof. Dr. Hartmut Gnuschke (Coburg, Germany)
Dr. Armin Günther (Frankfurt am Main, Germany)
Marcus Gustafsson (Linköping, Sweden)
Prof. Ernst-M. Hackbarth (Munich, Germany)
Prof. Dr.-Ing. Karl-Ludwig Haken (Esslingen, Germany)
Prof. Dr. rer. nat. Kay-Rüdiger Harms (Wolfsburg, Germany)
Prof. Dr. Stefan Hausberger (Graz, Austria)
Prof. Dr.-Ing. Peter Heidrich (Kaiserslautern, Germany)
Dr. Paul Hellier (London, United Kingdom)
Dr. Jose Martin Herreros (Birmingham, United Kingdom)
Prof. Dr. Dr. Gerhard Hettich (Stuttgart, Germany)
Prof. Dr.-Ing. Karl Alexander Heufer (Aachen, Germany)
Dr. Axel Ingendoh (Odenthal, Germany)
Prof. Dr.-Ing. Dr. h.c. Rolf Isermann (Darmstadt, Germany)
Prof. Dr.-Ing. Markus Jakob (Coburg, Germany)
Jean-Marc Jossart (Brussels, Belgium)
Prof. Sanghoon Kook (Sydney, Australia)
Prof. Dr.-Ing. André Casal Kulzer (Stuttgart, Germany)
Prof. Dr. Thomas Lauer (Vienna, Austria)
Dr. Felix Leach (Oxford, United Kingdom)
Prof. Francisco Lemos (Lisbon, Portugal)
Prof. Dr.-Ing. Frank Atzler (Dresden, Germany)
Dr. Klaus Lucka (Aachen, Germany)
Prof. Dr.-Ing. Bernd Lichte (Wolfsburg, Germany)
Prof. Ing. Jan Macek, DrSc., FEng (Prague, Czech Republic)
Philippe Marchand (Paris, France)
Prof. Dr. Ralph Mayer (Chemnitz, Germany)
Gustav Melin (Stockholm, Sweden)
Paul Miles (California, USA)
Prof. Yasuo Moriyoshi (Chiba, Japan)
Dr. Martin Müller (Hamburg, Germany)
Prof. Dr.-Ing. Axel Munack (Braunschweig, Germany)
Prof. Dr.ir. J.A. Jeroen van Oijen (Eindhoven, Netherlands)
Prof. Dr. Ralf Peters (Aachen, Germany)
Prof. Dr. Peter E. Pfeffer (Munich, Germany)
Prof. Dr.-Ing. Heinz Pitsch (Aachen, Germany)
Prof. Jacobo Porteiro (Vigo, Spain)
Prof. Dr.-Ing. Ralph Pütz (Landshut, Germany)
Prof. Dr. Dr. Dr. h.c. F. J. Radermacher (Ulm, Germany)
Prof. Dr.-Ing. Reinhard Rauch (Karlsruhe, Germany)
Prof. Dr.-Ing. Hermann Rottengruber (Magdeburg, Germany)
Prof. Christine Rouselle (Orleans, France)
Alarik Sandrup (Stockholm, Sweden)
Dr. habil. Martin Schiemann (Bochum, Germany)
Prof. a.D. Dipl.- Ing. Peter Schmid (Esslingen, Germany)
Carl-Wilhelm Schultz-Naumann (Munich, Germany)
Dr. Irene Schwier (Hamburg, Germany)
Prof. Dr.–Ing. Helmut Seifert (Ludwigshafen, Germany)
Dr. Kelly Senecal (Wisconsin, USA)
Prof. Seong-Young Lee, PhD (Michigan, USA)
Prof. Dr. Anika Sievers (Hamburg, Germany)
Dipl.-Chem. Anja Singer (Coburg, Germany)
Prof. Dr.-Ing. Werner Sitzmann (Hamburg, Germany)
Prof. Dr.-Ing. Rainer Stank (Hamburg, Germany)
Prof. Dr.-Ing. Michael Sterner (Regensburg, Germany)
Prof. Dr.-Ing. Rüdiger C. Tiemann (Saarbrücken, Germany)
Prof. Athanasios Tsolakis (Birmingham, United Kingdom)
Prof. Sebastian Verhelst (Ghent, Belgium)
Dr.-Ing. Jörn Viell (Aachen, Germany)
Oldřich Vítek (Prague, Czech Republic)
Prof. Dr.-Ing. Holger Watter (Flensburg, Germany)
Prof. Dr.-Ing. Thomas Willner (Hamburg, Germany)
Prof. Dr.-Ing. Karsten Wittek (Heilbronn, Germany)
Dr. Yuri Martin Wright (Zurich, Switzerland)
Prof. Dr.-Ing. Kai Wundram (Braunschweig, Germany)
Prof. Hua Zhao (London, United Kingdom)
Prof. Dr.-Ing. habil. Lars Zigan (Munich, Germany)
Additional supporters
Further information
and relevant studies
Glossary
- BEV
- Battery Electric Vehicle
- CCF
- Carbon Correction Factor
- COM
- EU-Commission
- ESR
- European Effort Sharing Regulation
- ETS
- European Emission Trading System
- FCEV
- Fuel Cell Electric Vehicle
- FQD
- Fuel Quality Directive
- GHG
- Greenhouse Gas
- HDV
- Heavy Duty Vehicle
- HEV
- Hybrid Electric Vehicle
- ICE
- Internal Combustion Engine
- LCA
- Life-Cycle Assessment
- LCF
- Low-carbon Fuels
- LDV
- Light Duty Vehicle
- LEV
- Low-Emission Vehicle
- LNG
- Liquefied Natural Gas
- NGV
- Natural Gas Vehicle
- OEM
- Original Equipment Manufacturer
- PC
- Passenger Car
- PHEV
- Plug-in Hybrid Electric Vehicle
- RED
- Renewable Energy Directive
- TCO
- Total Costs of Ownership
- TTW
- Tank to Wheel
- UCO
- Used Cooking Oil
- WLTP
- Worldwide Harmonized Light Vehicles Test Procedure
- WTT
- Well to Tank
- WTW
- Well to Wheel
- ZEV
- Zero-emission Vehicle